高い技術力

光学をベースに新たな価値を提供

創業以来、89年間培ってきた光学技術をベースに測量と眼科用 医療機器の分野で画期的な製品を生み出してきました。

また、1990年代半ば以降、様々な技術を獲得するため、海外 企業とのM&Aやアライアンスを積極化しました。培ってきた技術 と獲得した技術を融合させ、建設工事や農業の自動化、眼科以外 の身近な場所での眼病スクリーニング(日本国外のみ)など最先端 かつ独創的な製品・ソリューションを提供し、「技術のトプコン」と して高い評価を受けています。

トプコンは、「医・食・住」の社会的課題を解決する、という使命を 果たすため、未知の技術開発に挑戦し続けます。

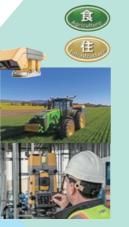
GNSS(全地球測位システム)技術

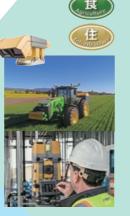
地球をとりまく測位衛星からの信号を 確実に捕捉する当社独自のVanguard Technology™は、GPS、GLONASSのみな らず、QZSS(準天頂衛星)、Galileo等、全て

の測位衛星に対応します。高速・高精度な

測位を実現するために、452チャンネルの

受信能力を装備し、高感度かつ安定した受


信を可能にしました。数mmの測位精度に


より、測量のみならず土木施工、IT農業ま

で幅広く活躍しています。

光センシング・応用光学

測量機に用いられている測距技術は、 レーザー光を測定対象まで往復させた 時間を精密に測定することにより、mm オーダーの距離精度を実現、高精度な 3D位置計測を支えています。また、分光 技術を応用し農作物の育成状況を非接 触で計測する技術は、リアルタイムに肥 料の散布量を制御し、収穫物の生育や品 質を均一化するIT農業の推進力となっ ています。

光学基礎

新たな価値の創造"Sensor to AI"

世界中で注目されている人工知能=AI。トプコンは高性能 センサーとAlを一体として実装する「Sensor to Allをコンセ プトに技術開発を進めています。トプコンの基軸である光学 技術を活かした高性能センサーにより、リアルワールドの データが持つノイズやゆらぎなどを抑制し、安定した高精度 の情報収集を可能にします。「センサーとAI」を一体として開 発できるのは、トプコンならではの特長です。

詳しい情報は **255**

光学設計

「Sensor to AI」を実現するためのセンシン グ技術の肝となるレンズ設計・薄膜技術を保 有し、光学計測システム全体を高度に最適化 する光学設計を行います。特殊薄膜塗布技術、 量産技術、特殊加工技術などを駆使しながら、 リアルワールドに配置される光学センサーを 創り出します。

率化に大きく貢献しています。

高精度な3D位置計測技術を基軸とし、精密 な油圧コントロール技術を組み合わせて、3次 元設計データに基づき建機のブレードやバケ ットの自動制御を可能にしました。また、IT農業 では位置情報と電動ステアリングとの組み合 わせで、農機の自動走行を実現し、農作業の効

3次元眼底精密検査

光学センシング、眼光学、画像処理技術の集 大成として、3D OCT(光干渉断層計)を世界 で初めて商品化。従来の眼底カメラ機能に加 え、眼底の微細な3次元構造を瞬時に映し出す 技術を開発し、眼科検査・診断の新時代を拓き ました。一部のモデルでは、網膜だけでなく硝 子体や脈絡膜まで撮影することが可能で、疾 患の進行の度合いや疾患機序の解明の研究用 途にも幅広く活用されています。

19 TOPCON REPORT 2021 TOPCON REPORT 2021 20